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General approximate methods of cMculating the bond scattering factor (defined in a previous 
paper) are devised: formulae are given which cover all cases arising from bonds involving (ls), (2s) 
and (2p) electrons. The approximate method is compared with the earlier rigorous method in a 
treatment of the hydrogen molecule and is found to be entirely adequate. 

The absolute accuracy of the resultant effective atomic scattering factor (fe) is carefully in- 
vestigated, again in the hydrogen-molecule case, by systematic  refinement of the wave function. 
A change of 'effective nuclear charge' in the atomic orbitals employed is found to have a consider- 
able effect on the calculated re, but the introduction of a certain amount of configuration inter- 
action (equivalent to the addition of ionic terms) is found to have a very small effect. I t  is con- 
eluded that  the original definition of an effective scattering factor (based upon a one-configuration 
wave function) is completely satisfactory. More complete knowledge of the parameters in molecular 
wave functions is perhaps desirable; but calculations based upon quite crude estimates are likely to 
yield substantially correct scattering factors since the valence-electron contribution is usually 
relatively small. On the other hand, at tempts to allow for the effect of bonding by empirical 
methods, using point charges in the bonds, are to be discouraged. 

1. Introduction 

In  a preceding paper  (McWeeny, 1952, hereafter  II) 
the problem of discussing the scattering of X-rays  by  
a molecule or lat t ice of bonded atoms has been for- 
ma l ly  solved: the convent ional  t r ea tment  is modified 
only in so far as the  atomic scattering factors are 
replaced by  certain effective factors which are obtained 
from the famil iar  isolated-atom factors (recently re- 
vised by  McWeeny,  1951, hereafter  I) by  addi t ion of 
appropriate  corrections. The corrections incurred in- 
volve certain 'bond scattering factors'  

'S f ( ~ )  = ~ ~ ( r A ) ~ ( r B ) e x p  { i u S . r } d r ,  (1) 

and  a l though an accurate and fair ly general  method 
of comput ing these quanti t ies  was developed in II,  
it  is evident  t ha t  calculations along these lines would 

* The Slater functions are nodeless, one-term functions 
with a radial factor rn exp {--ar}. 

become excessively laborious in elaborate applica- 
t ions;  indeed, even in the case of the hydrogen mole- 
cule (II) the  labour  involved effectively precluded a 
full  examina t ion  of the dependence of the results upon 
accuracy of the wave function. 

In  this  paper  a simple approximate method of 
evaluat ing the bond scattering factor is developed: 
the example  t reated in I I  is then  re-examined for 
purposes of comparison and  the new method is found 
to be ent irely adequate.  Briefly the method  consists 
of replacing the hydrogen-l ike or Slater (1930)* atomic 
orbitals occurring in (1) by  approximate  expressions 
of more sui table analyt ica l  form: the integrat ion m a y  
then  be effected in simple closed form without  any  
of the tedious expansions required by  the original, 
accurate method.  Sat isfactory approximat ions  to (ls), 
(2s) and (2p) orbitals follow in § 2 and make  possible 
the t r ea tmen t  of all bonds between atoms from hydro- 
gen to neon;  there should be no diff icul ty in extending 
the method  to heavier  atoms but  it seems clear t ha t  
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the effect of bonding will become relatively less im- 
portant  with increasing atomic number and for this 
reason attention will be confined to the orbitals men- 
tioned above (including, of course, linear combinations 
or 'hybrids'). 

2. The Gaussian approximation 

The value of Gaussian functions in constructing orbi- 
tals which are more accurately based upon hydrogen- 
like or Slater functions has been recognized elsewhere 
(McWeeny, 1949, 1950; Boys, 1950); in spite of the 
somewhat inferior accuracy of simple Gaussian ap- 
proximations they may often be manipulated much 
more easily than their more conventional counterparts. 
In  the present application we shall employ such func- 
tions simply as a means of approximating Slater 
orbitals, so tha t  the scattering integrals (1) may be 
reduced by substituting the Gaussian forms of ~ ,  qB. 

The Slater functions (unnormalized), and typical 
Gaussian terms from which corresponding approxima- 
tions may be built, are given in Table 1. 

Slater: 

Gaussian:  

Table 1 

(ls) (2s) (2p) 

exp {--Zr} r exp {--Zr/2} ( r .~)  exp {--Zr/2} 

exp {- -a t  2} r 2 exp {--a'r  ~} ( r .g )  exp {- -a"r  2} 

is a un i t  vec tor  along the (2p) orbital .  

The Slater functions, which are invariably made the 
starting point in molecular calculations and which 
are certainly accurate enough for our purposes (estima- 
tion of a bond correction), are themselves exact eigen- 
functions of a certain central-field problem: for the 
(ls) and (2p) functions this field is simply tha t  of an 
'effective point charge', Z, the electronic potential 
energy then being V ( r ) = - Z / r ,  while for the (2s) 
function it is such tha t  V(r) = - Z / r + l / r  ~. Our Gaus- 
sian functions will be rather less satisfactory than the 
Slater functions, but  we shall ensure tha t  they ap- 
proach the lat ter  by making them approximate solu- 
tions of the same eigenvalue problem. More specifically, 
we shall replace a Slater function (~) by a suitable 
(normalized) combination of Gaussian terms (yJ,, say) 
and vary  all the parameters until the integral E ,  = 

I ~ / y J f l r  reaches its lowest value, H being the 

Hamiltonian operator, H = -½v~+V(r) .  By the va- 

riation theorem, the resultant ~, is the ~best' approxi- 
mation to ~, of its kind, in the sense tha t  E~ is then 
the closest estimate of E in the eigenvalue equation 
H~ = E~v. First and second approximations to each 

Slater function have been constructed in this way by  
using, respectively, one and two Gaussian terms. The 
results, for a general effective charge Z (which appears 
simply as a scale factor), are collected in Table 2. 

The accuracy of the functions is reflected in tha t  of 
the eigenvalues (the errors are 2-8, 7-1 and 1 . 3 %  
respectively) but  more important  for our purposes is 
the range over which the Slater functions are closely 
fitted. I t  might, in fact, be argued tha t  since the ac- 
curacy of Ev is of no direct consequence to us these 
functions are not necessarily the best for our purposes. 
But  let us compare our approximations with the Slater 
functions. Fig. 1 shows clearly that,  while the one- 
term approximation is very poor, addition of a second 
Gaussian term effects an enormous improvement, 
leaving a substantial failure only in the region fairly 
near the nucleus: poor estimates of energy are to be 
associated with this residual failure at small distances. 
In  all cases, however, the (two-term) approximations 
are satisfactory over the broad 'middle range';  this 
is to be expected since the greater portion of the 
integral for Ev arises from this region and conse- 
quently variational correction of y~ first effects the 
most significant improvement in this range. Now we 
are using our functions to approximate a bond density, 
OaB = q)Aq~/SAB, and it is clear tha t  it  is precisely 
the middle regions of the functions which are in the 
main responsible for the accuracy of this approxima- 
tion. Fig. 1 makes this more obvious, for the vertical 
lines H and C indicate, on the scale of the figure, 
the position of the second nucleus in the hydrogen 
molecule and in diamond respectively. In  all cases 
the two-term approximations should give a QAB which 
is satisfactory except in the vicinity of the nuclei 
(where one of its factors fails). Moreover, these regions 
of failure comprise only a minor par t  of the bond charge 
cloud and the density there is in any case very small. 
I t  therefore seems likely, at the outset, tha t  our 
method of approximation should meet with consider- 
able success. 

Unlimited accuracy could, of course, be obtained 
by taking more Gaussian terms but  the variational 
procedure would then become unwieldy as a means of 
selecting best values of the many parameters and it 
might be preferable to resort to curve-fitting methods. 
At the same time, this aspect of the investigation 
should be kept in true perspective; it would be foolish 
to strive for wave functions of a precision quite out 

of keeping with the rather general issues at stake. 
In the test case of a later section the integral (1), 

defining the bond factor, is found to be rather insen- 
sitive to the precise form of the orbitals employed 

(Is) 
(28) 
(2p) 

Table 2. Gaussian approximations to Slater orbitals for effective nuclear charge Z; p = Z r  

1-term 2-term 

2-765 × 10 -1 . Za/2 exp {--0.282902 } 2 .426 × 10 -1 .Za/~ (exp {--1-33002}+0.725 exp {--0-201402}) 
3..: 14 × 10 -a . Za/20~ exp {--0.05016o 9} 1.493 × 10 -2 . Za/202 (exp { -  0"2037o 2} -t-0.190 exp {--0-0468502}) 
2.928 × 10-2.Za/2p.8 exp {--0.04468o ~} 4.109 X 10-2.Z3/2p.8 (exp {--0"1512Qa}~-0-392 exp {--0.0328702}) 
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Fig. 1. One- and  t w o - t e r m  Gaussian approx imat ions  to Slater  (18), (2s) and  (2p) funct ions.  The  ver t ica l  lines a t  H and  C indicate ,  
on the  appropr ia te  scale, the  posi t ion of a second nucleus  in the  h y d r o g e n  molecule and  in d i amond  respect ively.  

(qa, ~s)- Even the very crude, one-term function is 
not without value as a means of roughly (but very 
rapidly) estimating the effect of bonding, while the 
two-term function gives results almost indistinguish- 
able from those calculated (lI) using the true Slater 
functions. This suggests strongly that  there is no need 
to use more than two Gaussian terms: the functions 
given in Table 2 should be generally valid and are 
adapted to any particular problem simply by inserting 
the appropriate Z value (using Slater's rules); they are 
reasonably accurate in the range of special interest 
and undoubtedly represent a satisfactory compromise 
between high accuracy and general convenience. 

3. The ~,eneral e v a l u a t i o n  o f  b o n d  factors 

We shall now show that  the bond scattering factor 
for any type of bond involving the orbitals dealt with 
in § 2 may be easily evaluated in closed form; the 
same treatment can be extended to more general cases 
if necessary. 

First consider the integral 

I exp ( - a r ~ )  exp (--br2B) exp ( inS . r )d r ,  (2) (a[f[b) 

0 
Fig. 2. No ta t ion  used in calcula t ing the  bond  fac tor  for a bond  

A-B, refer red  to an  a rb i t r a ry  origin O. 

the notation being as in Fig. 2. The single Gaussian 
terms from which the approximations to (ls), (2s) and 
(2p) orbitals are constructed may be denoted by 

(ls, a) = exp { - a r 2 } ,  (2s, a') = r 2 exp {-a ' r2},  
A 

(2/9, a") = r . 5  exp {--a"r~a}, 

so that  the approximations become, 

(ls) = 2 ,  A , ( l s ,  at), (2s) = Z A;(2s,  a;), 
r T 

t t  t /  

(2p) --- Z A, (2p, a, ) .  
r 

With a similar notation, the integral (2) may be de- 
noted more fully by (Is, aJf i ls ,  b) where the informa- 
tion in the first and final brackets relates to the orbi- 
tals on centres A and B respectively. The correspond- 
ing many-term approximation to a bond scattering 
factor involving (Is) orbitals on atoms A and B would 
be ( ls] f] ls)  = ~Y, ArBs ( l s ,  ar]f[ls, bs).* Similarly 

(2slf]2s) = .~  A;B£(28, a~lfl2s, b~) etc., and it there- 
T~ 8 

fore suffices to evaluate the terms involving single 
Gaussian orbitals. 

Now if we denote the integral (2) by I it follows that  
(2s, alfJl8, b) = - ( b I / a a ) ,  (ls, aJfl2s , b) = -(OI/Ob),  
(2s, a[fl2s, b) = (02I/OaOb), so that  all scattering inte- 
grals involving only (2s) orbitals may be derived by 
differentiating I (which we shall see may be evaluated 
in closed form) with respect to the parameters a, b. 

• In order to deal with the (2p) orbitals it is convenient 
to introduce vectors A'  = A+Sa ,  B' = B+SB, where 

SA = Saga and 5 .  = 8 . g .  (gA and ~ .  being unit vec- 
tors) are vectors pointing along the directed (2/9) 
orbitals at A and/3,  and to denote by I '  the integral 
(2) in which A, B are replaced by A', B'. I t  then 
follows easily that  

l( r / 
(2p, alf]ls ,  b) = "~a \~6a/~a,~z-+o ' 

1 
(Is., a l f l2p,  b) = ~-~ 

(2p, al f l2p,  b) = 4aab \0Oa06J~a,~_~0' 

(2p, a]f[2s, b) = - ~ a  \06 a Ob,/ oa, oB-+o" 

so that  all the scattering integrals involving (2p) 
orbitals may also be derived from the single integral (2). 

* I f  the  orbitals on A,  B are similar, Ar = Br, ar----br. 
General ly  this  is no t  so and  in w h a t  follows we denote  the  
pa rame te r s  on the  two sides of f s imply by  a and  b. 
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We shall now evaluate (2) and list for convenience 
the final expressions for the various integrals. The 
only necessary result is 

~r~3/2 2 
i exp ' - P r ~ + q .  r ' d r  : T-~ exp {4~} 

which may be proved in the general case (in our 
application the vector q has complex components) by 
separating the integrand into x, y, z factors and 
evaluating each of these by integration round a suit- 
able contour. 

We then obtain 

~312 
I =  

(a+b)a/~ 
A 

{-4ab  ( A -  B)~+ 4iu' (aA +bB). S -  u 'e} 
x exp 4(a+b) - , (3) 

where S is the unit vector along S and u' = uS. 
Putting ( B - A ) =  11, (u'/47r)= X, and with y: as 

the angle between S and the bond, we then find, on 
differentiating and carrying out the limiting processes, 

(2s, al f[ ls ,  b) = - I G ~ ,  

(Is, alf]2s, b) = - I G b  , 

(2s, a]f]2s, b) = I[G~G~+Ga~] , 

(2p, a]f[ls,  b) = (1/2a)IG~ a , 

(ls, a]f[2p, b) = (1/2b)IG~z, 

(2p, al f l2p,  b) = (1/4ab)I[G~aGoa+G,~a~a] , 

(2p, alfl2s,  b) = -(1/2a)I[G~aG~+G~a~ ] , 

(2s, al f l2p,  b) = -(1/2b)I[G~G~z+G~z] , 

where each G-function is of the form ( K + L X  ~) + i M X  
and 

Important  special cases occur when the (2p) orbitals 
point along or perpendicular to the bond axis: thus 
for a ~-type bond 

8 a . ~ i B = l ,  R . S a = R . S B = 0 .  

Finally it is worth noting that  when 9a = 9~ the 
bond charge density ~aB is symmetrical about the 
mid-point and consequently f(~aB), referred to this 
point as origin, is a real quantity. The calculations 
are slightly simplified by this observation since, with 
this origin, the terms occur in conjugate pairs. The 
contribution, fa(~aB), to the atomic factor f~, is then 
obtained from f ( ~ )  on multiplication by the phase 
factor exp (2niXR. ~) (cf. II). 

4. A c c u r a c y  of  the G a u s s i a n  a p p r o x i m a t i o n  

An accurate evaluation of the integral (1) has already 
been made in the case of the hydrogen molecule (II). 
At this point it is not our intention to discuss the 
absolute accuracy of the bond factor so calculated, 
since this depends on the choice of wave function. 
The actual calculation cited was, however, carried 
through quite rigorously and may, therefore, be used 
as a standard in estimating the accuracy of the 
approximation techniques developed in the last two 
sections. A discussion of the absolute accuracy of the 
bond scattering factor and of the effective atomic 
factor will be given subsequently (§ 5). 

The bond factor f(0a~) has been calculated using 
both one- and two-term Gaussian approximations to 
the hydrogen (Is) functions. From these approximations 
the effective atomic factor f~ is then constructed 
according to the method of II.  The results are sum- 

- (2b~R~+3a+b) 4rd 
K~ = La 

2(a+b) 9- (a+b) 9 

- (2a2R 2 + 3a + b) 4g  2 
Kb = 2(a+b) 2 Lb = (a+b)----- i 

3a + b - 4 a b R  2 - 8 ~  e 
K~ = Lab 

2(a+b) a (a+b) a 

2ab R. 5a 
K~a = (a+b) Lea = 0 

A 

-2abR .  5B L ~  = 0 
Koz = (a,i,b) 

2ab~a.~B 
K,~a,~ = (a+b) Loa~B = 0 

2a2R. ~a 
K~ab (a+b)2 L~ab = 0 

-2b2R.SB 
Kaoz = (a+b)~ " Laoa = 0 

M a  
-4r~bR cosy: 

(a+b) 2 

M b -~ 
4rmR cos y: 

(a.÷b) ~- 

Mab 

M~ 

M6 B = 

- 4 r ~ ( a - b ) R  cos y: 
(a+b) a 

4-a .L 
(a÷b) 

(a+b) 

M e A  eB = 0 

Ma~ B = 

- 4 g a S . ~  a 
(a+b) 2 

(a.÷b) 9 
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marized in Figs. 3 and  4, where the various est imates 
of f(Q~B) and  f~ )  are shown for two orientations of 
the molecule, ~ = 0 and yj = ½7~. 

Na tu ra l ly  the calculations based on the single-term 
Gaussian funct ion are quite seriously in error: the 
ma in  inadequacy  of this  approximat ion  is p robably  
its failure to recognize the marked  aspherici ty  of the 
bond charge, which in this  approximat ion  is effectively 
replaced by  a more diffuse spherical distr ibution.  The 
poor approximat ion  to f(Q~B) is reflected in the corre- 
sponding fe curves, bu t  i t  is worth noting tha t  both 
the general  effect of bonding and the predicted dif- 
ferences between the factors for various orientations 
are essential ly accounted for. Phys ica l ly  this  would 
suggest tha t  the general  disposition of electronic charge 
is more impor tan t  t h a n  the precise shapes of the distri- 
but ion into which it  is resolved: this  is par t icular ly  
true when there is strong interference between the 
different  (atom- and  bond-) scattered beams (as in 
the case yJ = 0). 

The two-term results are much  more satisfactory, as 
would be expected from an inspection of the funct ion 
itself (Fig. 1). The effect of aspherici ty of the bond 
charge is well reproduced and the f inal  correction of 
the isolated-atom factor leads to an effective factor 
which, on the scale of Fig. 4, is indis t inguishable from 
tha t  calculated by  the rigorous method of II .  The 

1"0 

0"8 

0"6 

0 " 4 -  

' m 11 ~ ~ . ~ 2  
O'2 

0 
0 0"2 0"4 0"6 

X= (sin 0/,).) (h-') 
Fig. 3. Approximations to the bond factor. The curves 1 and 2 

refer to the cases yJ ---- 0, y~ = ½zr. The solid curves are 
accurate while the one- and two-term Gaussian approxima- 
tions are indicated by . . . . .  a.~d . . . .  respectively. The 
one-term approximation fails to distinguish the two curves 
i and 2. 

phase shift, which is p robably  more sensitive to in- 
accuracies*, is also well accounted for. The case y~ = ¼~ 

* The one-term approximation breaks down completely in 
the case ~ = ¼~ but the higher approximation is generally 
satisfactory. 

has also been treated,  with equal  success, hu t  the corre- 
sponding curves are omit ted in the interests of clarity. 

Now the hydrogen molecule provides the severest 
possible test  of the adequacy of our calculations, for 

1"0 

0"8 

0"6 

If el 
0"4 

0"2 

0 
0 0"2 0"4 0"6 

0 ' 0 0"2 0"4 0"6 
x =  (si. o/~) (A-') 

- 1 2 

Fig. 4. Magnitude and phase of the atomic factor, re. The 
solid curves are accurate while approximations are indicated 
as in Fig. 3. Curves 1 and 2 again refer to cases yJ---- 0, 
v 2 = ½z. The two-term approximations to Iffl are indistin- 
guishable from the accurate curves. 

in more complicated molecules, where the  atoms 
possess inner  shells, the  effect of bonding is re la t ively  
less impor tant .  I t  therefore appears t ha t  the Gaussian 
method  of evaluat ing the  bond factor will general ly 
be ent i re ly  adequate  for our purposes. I t  is perhaps 
worth remark ing  tha t  the complete calculation of f f  
for hydrogen,  using the  two-term approximat ion,  can 
easily be made  in a day  as compared with several 
weeks when using the rigorous method  of I I ;  more- 
over, the  economy of the Gaussian method  increases 
as the funct ions become more complex. 

5.  A b s o l u t e  a c c u r a c y  o f  ~AB) a n d  [ e  

We are now in a posit ion to examine  in some' detai l  the 
approximat ions  upon which our calculations have so 
far  been based. The only fundamen ta l  assumpt ion 
upon which the formal  definit ion of an effective scat- 
tering factor (II) is based, is tha t  a one-configuration 

~ p p r o x i m ~ i o n  (i.e. a single de te rminan t  formed from 
a sui table set of atomic and  molecular  orbitals) ad- 
equate ly  represents the  true wave function. I t  is well  
known tha t  such a funct ion over-emphasizes the 
p robab ih ty  of f inding two electrons s imul taneously  
on a given a tom;  in the language of valence bond (VB) 
theory  we should say tha t  ionic structures are re- 
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presented in the wave function with too great a weight. 
A second assumption, of a more provisional nature, 
concerned the precise choice of valence orbitals ou t  of 
which to build the molecular orbital: it was suggested 
(I) that  the parameters (e.g. effective nuclear charge) 
appropriate to the free atom might be carried over 
unchanged into the molecular calculations. I t  is easy 
to examine the limitation imposed by this second 
assumption by repeating the calculation for the hy- 
drogen molecule, using modified atomic orbitals (AO's) 
corresponding to an effective nuclear charge Z =  1.193" 
instead of the isolated atom AO's (Z = 1). 

(i) Effect of change of AO parameters 
Reference to Fig. 5, which is best compared with 

Fig. 3 of IX, shows that  the refinement of using an 
effective nuclear charge Z = 1-193 makes a substantial 

Ir'l 

0 
0 

k 
• 4 7  • 

0"2 0"4 0"6 

0 0"2 0"4 0"6 
X =  (si. O/z) (h-') 

Fig. 5. Magni tude  and  phase of the  a tomic  factor ,  j~e, in the  
higher  approx imat ion  (§ 5). Curves 1, 2, 3 refer  to orienta-  
t ions ~ ---- 0, ¼7r, ½~r, while 4 is the  i so la ted-a tom factor ,  f .  

alteration in the character of the results: for now 
fe is nearly always greater than f (often by as much as 
50 %), in complete contrast with our previous predic- 
tions. Whilst the qualitative features are preserved, it 
would appear that  the absolute value of ff cannot be 
given with any confidence unless the AO parameters 
appropriate in the molecule are known with fair accu- 
racy. The reason for the marked change is physically 
clear: the increased effective charge in the molecule 
implies a considerable 'shrinkage' in the AO's con- 

* This is the  mus t  suitable value according to a var ia t ional  
calculation. 

cerned, and this in turn leads to a greater concentra- 
tion of charge in the region of the nuclei (and the axis) 
and a corresponding broadening of the scattering 
curves. Indeed, to a first approximation the effect 
results in a change of scale along the X-axis (of the 
if(X) curves) in the ratio of the original and modified 
effective charges (i.e. in this case almost 20%). Now 
there is at present very considerable uncertainty about 
the most suitable values of AO parameters in MO's; 
the analogy with the case of the hydrogen molecule 
has lead to the suggestion that  exponents should be 
increased by about 20% when an AO is used in a 
• bonding MO (e.g. Coulson & Duncanson, 1942). There 
are, however, grounds for believing that  in H~ (the 
only case of molecular bonding with (ls) orbitals) the 
20% increase is quite exceptional and that  the ap- 
propriate changes to be made in cases of (2s) and (2p) 
bonding might not exceed 5%. 

(ii) Effect of configuration interaction 
In the present case (the hydrogen molecule) it is not 

difficult to refine the wave function by adding new 
configurations (i.e. determinants containing excited- 
state MO's) and allowing them to mix with the single 
configuration, used so far, in such proportions as 
achieve the lowest possible variational energy value. 
The function so far used as a first approximation to 
the ground state, namely 

~r/= I ~pg(1)°c(1) ~0g(1)fl(1) ] 
~g(2)o`(2) ~g(2)fl(2) ' Y~g = ~ a + ~  ,* 

might thus be refined by adding a small proportion of 

~,  = v,,,(1)o,(1) v,,,(1)/~(1) I '* 
$ 

which would similarly be a first approximation to an 
excited state with both electrons in the anti-bonding 
orbital W=. Now if the function ~+2k~ '  is expanded 
it turns out to be simply the variation function chosen 
by Weinbaum (1933), in which the well known Heitler- 
London function is supplemented by ionic terms re- 
presenting both electrons on the same nucleus. This 
interpretation of the Weinbaum function was pointed 
out by Coulson & Fischer (1949) and shows that  the 
main failure of the single-configuration MO function 
(over-emphasis of the ionic terms) may be corrected 
by admitting higher configurations. 

Using the M0 method, it would be possible to modify 
the definition of f  e (II), without introducing prohibitive 
difficulties, in order to admit interaction with a small 
number of configurations. This is because the Me's,  
at least in principle, are solutions of a self-consistent 
field problem and as such are mutually orthogonal 
(as assumed throughout these papers). But our 
knowledge of the extent of such interaction is, as yet, 
scanty, and if a substantial revision of the (one- 

* Not  normalized.  
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configuration) charge distribution and corresponding 
fe should prove necessary there would be little prospect 
of making calculations in any but the simplest cases. 

The best choice of parameters in the function 
W+~tT'  follows from Weinbaum's calculation. Use of 
this function reduces the absolute error in the varia- 
tional energy value corresponding to the single deter- 
minant  (~r/) by almost a half and it seems safe to con- 
clude tha t  the difference between f~(MO) and ff(Wein- 
baum) is of the same order as the absolute error in ft. 

The results of the final calculation of ff are extremely 
gratifying: the curves of Fig. 5 (fl(MO)) are practically 
unchanged by configurational interaction, the general 
effect being to raise the plotted values by, on the 
average, about 2 70. A generous estimate of the average 
absolute error of the f values might be about 5 %. 

6. Concluding r e m a r k s  

We may  now profitably summarize our finding. The 
original MO definition of an effective atomic scattering 
factor f~ is entirely satisfactory; in this approximation 
the scattering from the valence electrons is resolved 
into contributions from charges qz on the atoms (A) 
and q~B in the bonds (A-B), these atom- and bond- 
charges being smeared out with (normalized) densities 
Qn and QAB- Our ~nain concern so far has been with 
the scattering from the bond density ~B,  whose 
calculation provided the main obstacle to progress; 
this difficulty has now been resolved by introducing 
Gaussian approximations to the various wave func- 
tions. 

The absolute accuracy of the valence-electron con- 
tr ibution to f~ appears to be of the order 5 % in the 
case of H 2. In more general applications this figure 
may  be raised somewhat by our ignorance of the most 
suitable values of AO parameters, but  at the same time 
the valence-electron contribution becomes an in- 
creasingly less significant fraction of the whole ft. 
The main effects of chemical bonding may, therefore, 
confidently be predicted by the methods so far 
developed. For a lattice of atoms at rest a complete 
solution of the scattering problem would appear to 
be in sight. Unfortunately,  in practice, the issue is 
always complicated by vibrational effects (e.g. vibra- 
tional anisotropy) which still cannot be properly 
estimated. We must, therefore, be prepared to make 
further changes in fe (as indeed is the practice with the 
simpler f 's), but these will now be almost* entirely 
vibrational in origin. In other words, we shall have 
achieved the pr imary object of separating off, with 
adequate accuracy, the hitherto obscure effects of 
interatomic interactions. 

The extension of the t reatment  to more elaborate 

* The small corrections to f, based on the diffuse valence- 
electron distribution, are almost certainly relatively insensitive 
to vibration. 

cases involves no new features beyond the calculation 
of the atom and bond charges. The definition of these 
quantities (McWeeny, 1951) is quite general and they 
may be estimated for polyatomie (including conju- 
gated) molecules and for solids, either by self-consistent 
MO techniques (at least, in principle) or by the cruder 
semi-empirical MO method~ (i.e., in solids, by the 
' t ight-binding' approximation). However roughly these 
estimates may  be made it seems likely tha t  in most 
cases they give a fairly good picture of the general 
disposition of charge, being, therefore, satisfactory for 
our purpose. At the same time it seems necessary to 
remark tha t  this method of dividing up the valence- 
electron charge distribution provides absolutely no 
theoretical justification for the practice of 'allowing for' 
the bonds by placing empirically adjusted point charges 
at the mid-points (e.g. Franklin, 1950; Bacon, 1952). 
I t  is essential tha t  the bond charges should be those 
defined above and tha t  they should be properly 
spread out each according to a density function Q~B. 
Localization of qaB corresponds, in effect, to retention 
of only the first term in a slowly convergent expansion 
of the bond factor in powers of X;  inclusion, for 
instance, of a second term leads to quite absurd results, 
bearing out our contention tha t  the point-charge 
approximation is quite meaningless. Of course, it is 
always possible to say tha t  for a certain reflexion (i.e. 
for one particular S vector) the scattering from the 
bond density is equivalent to tha t  from a certain point 
charge, for any f-curve merely tells us the fraction 
of a unit point charge e to which the distribution is 
equivalent, as a function of (sin 0/4). But  this is an 
obvious evasion of the problem, for widely different 
point charges would be required to account for the 
different reflexions, corresponding to the fact tha t  the 
actual bond factor is a complicated function of orienta- 
tion and scattering angle. 

My thanks are due to Prof. G. S. Rushbrooke for 
kindly reading the manuscript  of this paper. 
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